<table>
<thead>
<tr>
<th>Petroleum system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a reservoir?</td>
<td>04</td>
</tr>
<tr>
<td>Formation of hydrocarbons</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>About the reservoirs</td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced Oil Recovery (EOR)</td>
<td></td>
</tr>
<tr>
<td>Why considering EOR?</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Principles of Polymer Injection</td>
<td>10</td>
</tr>
<tr>
<td>Polymer solvent interaction</td>
<td>12</td>
</tr>
<tr>
<td>Polymer degradation and strategies to minimize it</td>
<td>14</td>
</tr>
<tr>
<td>Use of surfactants and alkali in EOR</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SNF in Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose Engineering Services</td>
<td>18</td>
</tr>
<tr>
<td>Projects</td>
<td>20</td>
</tr>
</tbody>
</table>
A petroleum reservoir, or oil and gas reservoir, is a subsurface pool of hydrocarbons contained in porous or fractured rock formations. The naturally occurring hydrocarbons, such as crude oil or natural gas, are trapped by overlaying rock formations with lower permeability. The vast majority of hydrocarbons are trapped within sedimentary rocks, formed at the earth surface through several processes including weathering, precipitation and biogenic activity. We can distinguish:

Clastic rocks
formed from pre-existing rocks by erosion, transport, transformation and deposition. These include sandstones, conglomerates, siltstones and shales.

Carbonates
rocks formed from organic constituents and chemical precipitates; including limestones, dolomites and chalks.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Oil bearing reservoirs</th>
<th>Abundance of rock type</th>
<th>Production by rock type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone</td>
<td>60%</td>
<td>21%</td>
<td>37%</td>
</tr>
<tr>
<td>Carbonate</td>
<td>30%</td>
<td>37%</td>
<td>61.5%</td>
</tr>
<tr>
<td>Other (shale...)</td>
<td>10%</td>
<td>42%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Petroleum system

What is a reservoir?

Drilling rig

Cores are drilled to study the reservoir
The petroleum system consists of a mature source rock, migration pathway, reservoir rock, trap and seal. Appropriate relative timing of formation of these elements and the processes of generation, migration and accumulation are necessary for hydrocarbons to accumulate and be preserved. Hydrocarbons are generated from the thermo-cracking of organic matter accumulated in a source rock. It requires temperature (>50°C) and time.

Formation of hydrocarbons

Many types of hydrocarbon traps exist:
Anticline, Fault, Stratigraphic trap, Salt dome, ...

- **Anticline**
- **Fault**
- **Stratigraphic trap**
- **Salt dome**
Characteristics of oil and gas generated depend on the type of organic matter and the maturation process. People also make a distinction between conventional and unconventional resources: unconventional plays require specific and often expensive techniques to be produced.

Unconventional resources:
example of tight gas reservoirs
In tight gas reservoirs, the pores are irregularly distributed and poorly connected by very narrow capillaries resulting in very low permeability. Gas flows through these rocks at generally low rates and special methods are necessary to produce this gas such as hydraulic fracturing.

Unconventional play
By opposition with conventional systems, unconventional resources are not easily producible with existing technologies (low permeability reservoirs or viscous oil)

Source-rock hydrocarbons
Shale Oil or Shale Gas directly extracted from the source rock by fracturation.

Data source:
US Energy Information Administration from Oil and Gas Journal (2007)
Oil includes crude oil and condensate

Acronyms
- OOIP : Original Oil in Place
- IOR : Improved Oil Recovery
- EOR : Enhanced Oil Recovery
- Chem EOR : Chemical EOR
- PF : Polymer Flooding
- SP : Surfactant and Polymer Flooding
- ASP : Alkaline Surfactant Polymer Flooding
- PAM : Polyacrylamide
- HPAM : Partially Hydrolized Polyacrylamide
- MW : Molecular Weight
- Da : Dalton (MW unit of measure)
- IFT : Interfacial tension
- PSU™ : Polymer Slicing Unit
- PIU™ : Polymer Injection Unit
Conventional Reservoirs
Small Volumes,
Easy to Develop

Unconventional Reservoirs
Large Volumes,
Hard to Develop

Huge Volumes,
Difficult to Develop

Resource pyramid

Coal Bed Methane
Gas Shales
Tight Gas Sands
Tight Oil
Heavy Oil
Bituminous Sands
Gas Hydrates
Oil Shale

Oil
Gas

Tight gas sandstone: (voids in blue).
Why consider EOR?

The production of hydrocarbons is usually divided into 3 stages:

Primary depletion
Oil is naturally produced thanks to the energy initially stored within the reservoir;

Secondary production
In order to maintain the production and the pressure in the reservoir, water (or sometimes gas) is injected to push the hydrocarbons;

Tertiary production
Injection of specific substances to increase recovery (gas, chemicals, steam...).

Primary production
Natural flow and artificial lift techniques (pumps)

Secondary recovery
Water flooding or pressure maintenance

Tertiary recovery
Enhanced Oil Recovery methods

35% of Oil Originally In Place (OOIP) is produced after primary and secondary productions. It means that 65% of oil remains after secondary recovery, trapped into pores by different forces.

There is little doubt that the worldwide demand for oil will increase in the long term. But reserves are not generally replaced and it would require the discovery of new «giant» fields.

Drilling alone is expensive: it requires a large capital investment, and drilling rate is inversely correlated with discovery rate. The costs linked to exploration & extraction increase (ultra-deep offshore, artic circle...). As such, increasing the recovery factor by 1% would translate into 60 billion extra barrels.

EOR applies to known reservoirs, infrastructure is already in place and the market for hydrocarbons is available.

Polymer flooding is a proven, cost-effective EOR technique with over 40 years of commercial application that allows recovering from 5 to 15% of additional oil. The best commercial projects have produced about 1 incremental barrel of oil for each $1 to $3 of polymer (onshore).

The addition of water-soluble polyacrylamides increases water viscosity and helps push bypassed oil more efficiently. A first step consists in evaluating the potential through a pilot injection. A pilot is a good way to prove the efficiency:

- Fast deployment (skid-mounted systems)
- Low costs
- Low risks

Enhanced Oil Recovery (EOR)
Modular injection systems can be tied-in to existing injection lines: no need to build new infrastructure, use of available water for polymer injection. After this stage, full-field deployment can be considered. Polymer flooding reduces costs related to water handling. The process requires less water to recover the same amount of oil, so the costs linked to water treatment & handling are reduced. Produced water containing polymer can be reused for further injection. In the long-term, polymer flooding can be less expensive than waterflooding. Preferable conditions for polymer injection are light to medium-heavy oil, low salinity, medium to high reservoir permeability, low temperature (below 100°C). Even though, new polymers can resist harsh conditions: 140°C and around 200g/L total salinity.

The earlier, the better: implementing polymer flooding early in the life of a field helps increase the final amount of oil recovered.

History of chemical EOR projects

1976 - 1982
More than 320 chemical injections in the US
- East Coalinga
- Taber – Manville
- West Yellow Creek
- North Burbank

1989 - 2000
Large success in China
- Daqing: world’s largest polymer injection, resulting in a 12% increase in recovery of the OOIP.

2010 - 2015
More than 50 polymer injections.
More than 170 projects.
- China (Daqing cont’d)
- Oman PDO Marmul
- Suriname
- Indonesia
- Russia & Kazakhstan
- Europe
- Latin America
- India

Enhanced Oil Recovery (EOR)

[Diagram showing various oil recovery factors and viscosity ranges]
Principles of Polymer Injection

Polymer injection =
viscous waterflood ■ limited risk

Polymer injection applies when the mobility ratio during a waterflood is unfavorable or when the reservoir is heterogeneous (even with favorable mobility ratio) to recover bypassed oil.

How to design a successful pilot?
The main criteria to look at when designing a pilot injection are:

- Short spacing /residence time between injection and production well to accelerate the response
- Good connectivity between wells
- Pattern with surrounding offset producers where incremental oil from polymer injection can be isolated for calculation
- Good water injectivity good polymer injectivity
- Tests to check maximum rates and viscosity accepted by reservoir
- Micro-fractures can be used to improve the overall efficiency
- Relatively high oil saturation (residual oil saturation)

Pilot injection can start very quickly using standard equipment.

Some key figures:
- Polymer is injected over 5 to 25 years.
- Typical injection concentrations range from 1000 to 1500 ppm active.
- Injection of at least 0.3 pore volume: the more the better.
- Injection of high viscosity slug recommended in some cases.
- Incremental oil with polymer ranges from 5% to 15% OOIP.
Two families of polymers:
- Biopolymers
- HPAM: Partially Hydrolyzed Polyacrylamide (synthetic polymers)

Fine-tuning chemistry can help to limit shear and salt sensitivities of synthetic polymers.

SNF develops and manufactures tailor-made polymers based on acrylamide. High molecular weight hydrosoluble polymers are mainly used to increase viscosity.

Polymer / Solvent Interaction

Important notions to understand properties of polymers into solution.

A polymer is able to increase the viscosity of the medium only if the chains are uncoiled: this is a medium where the polymer « feels comfortable. »

What does it mean ? It means the interactions polymer / solvent should be better on the energetical point of view than the interactions polymer / polymer.

Advantages

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent injectivity and propagation</td>
<td>Shear sensitive</td>
</tr>
<tr>
<td>High viscosifying power</td>
<td>Salt and temperature sensitive</td>
</tr>
<tr>
<td>Good and long stability in mild reservoir conditions</td>
<td>Sensitive to chemical degradation</td>
</tr>
<tr>
<td>Cost-effective, high production capacity worldwide</td>
<td>Non toxic</td>
</tr>
<tr>
<td>Non toxic</td>
<td>Low biodegradability</td>
</tr>
</tbody>
</table>

HPAM characteristics

- Excellent injectivity and propagation
- High viscosifying power
- Good and long stability in mild reservoir conditions
- Cost-effective, high production capacity worldwide
- Non toxic
- Low biodegradability
Polymer chemistry needs to be carefully selected
> Importance of brine characteristics.
> Polymer/solvent interactions describe the conformation of the polymer chains (coil) in solution > Efficiency.

If the interactions are good, the macromolecular chain deploys into the medium.
Polymer chain expanded > high viscosity

Collapsed chain
Polymer-Polymer interaction

Expanded chain
Polymer- Solvent interaction

Low viscosity

Good solvent

High viscosity

1% Polyacrylamide in H\textsubscript{2}O
(viscosity brookfield) \(\eta = 5,000 \text{ to } 6,000 \text{ mPa.s} \)
(Brookfield UL @6 rpm)

Water is a good solvent.

1% Polyacrylamide in H\textsubscript{2}O+Ethanol (70/30)
\(\eta = 700 \text{ to } 800 \text{ mPa.s} \)
(Brookfield UL @6 rpm)

The medium H\textsubscript{2}O/Ethanol is a less good solvent.
The polymer « feels less comfortable. »
The macromolecular chain uncoils partially.

1% Polyacrylamide in Ethanol
\(\eta = \eta \text{ of ethanol} \)
(Brookfield UL @6 rpm)

Very bad interactions.
The polymer « feels very uncomfortable. »

Viscosity depends on solvent
Polyelectrolytes

Polyelectrolyte is a polymer containing electrostatic charges into the macromolecular structure. In a polar medium like H_2O, the polymer is able to expand due to internal electrostatic repulsions (stretching of the chains). It results in a high viscosity.

But if salts are present/added, viscosity decreases because of a «screen effect»:
- decrease of repulsions
- the macromolecular chains retract
- viscosity decreases

Associatives Polymers

Associative thickener

Associative polymers are hydrophilic polymers containing some hydrophobic groups. A network is created by hydrophobic interactions in water. These interactions create a physical network and very high viscosities can be obtained.

If salts are present/added, viscosity decreases because of a «screen effect»:
- decrease of repulsions
- the macromolecular chains retract
- viscosity decreases

1% Polyacrylamide in H_2O

$\eta = 5,000 \text{ to } 6,000 \text{ mPa.s}$

(Brookfield UL @6 rpm)

1% Copolymer Acrylamide/AMPS in H_2O

$\eta = 20,000 \text{ to } 25,000 \text{ mPa.s}$

(Brookfield UL @6 rpm)

Expansion of the macromolecular chain by electrostatic repulsion
The value of adding polymer to a waterflood can be explained by considering the mobility ratio equation with the aim to reach a value close to 1 so that oil and water have the same mobility inside the reservoir. The easiest way is to increase water viscosity as shown by the equation below. Polyacrylamides are sensitive to mechanical, thermal and chemical degradations. Guidelines exist and have to be implemented to minimize viscosity losses. There is a need to:

- Select the best chemistry and possible protective packages
- Use specific equipment to avoid shearing and oxygen ingress.

Polymer degradation and strategies to minimize it

Mechanical degradation

Mechanical degradation is caused by singular pressure drops. Mechanical degradation through shearing devices can lead to significant reduction in viscosity.

Polyacrylamides are sensitive to shear which degrades the polymer into smaller molecules. Lower molecular weight polymers are much less sensitive to shear.

Special attention should be paid to:
- Dissolution and surface injection equipment,
- Velocity of the fluid,
- Injection lines (restriction, chokes),
- Surface of perforations,
- Permeability of the reservoir,
- Reduction of the injection surface by plugging

SNF has defined a set of engineering guidelines to minimize shear in the surface equipment.

Mobility ratio

\[
M = \frac{k_w \mu_o}{k_o \mu_w}
\]

Mechanical degradation

- Chemical degradation
- Thermal degradation
- Stable fluid

Hydrolysis effect
+ gradual effect of dilution and retention

Reduced hydrodynamic volume
Chemical degradation is caused by free radicals. It is essential to minimize chemical degradation by eliminating free radicals, removing oxygen and blanketing dissolution equipment.

Free radicals scavenger
SNF sells all its product with a minimal amount of free radical scavenger. For increased protection, specific packages (F3P) are developed by SNF and fine-tuned to every case.

Oxygen removal
Oxygen scavengers (ammonium bisulfite for example) decrease O₂ content below 20 ppb. The amount of scavenger should be limited to avoid further degradation in case of oxygen ingress.

Nitrogen blanketing
Dissolution equipment can introduce a large amount of oxygen into the injected solution. It is necessary to blanket the installation under Nitrogen in order to prevent oxygen ingress.

Thermal degradation is linked to polymer hydrolysis and precipitation with divalent cations. Polymer microstructure and anionicity should be carefully selected and controlled to minimize thermal degradation.

Copolymers acrylamide/acrylic acid are stable up to 75°C. Above 75°C and up to 120°C, polymers containing acrylamide/ATBS or and other thermal resistant monomers can be used (Flopaam AN 100 & Superpusher SAV series). Above 50°C, hydrolysis of the polymer will occur resulting in increased anionicity. When anionicity increases above a critical level (35% to 40%) precipitation with divalent ions (Ca²⁺, Mg²⁺) will occur resulting in viscosity loss.

With medium to high temperature reservoirs, low anionicity polymers should be privileged. The quality of the manufacturing process of the polymer is essential to avoid high polydispersity.

Chemistry

Temperature limits for sulfonated co-polymer AN-125
ATBS based copolymer (Flopaam AN 125) w/o O₂ and divalent cations

New range of polymer for high temperatures
NVP addition improves stability at high temperature w/o O₂ and divalent cations
Wettability connotes the preference of a given liquid to spread over a solid surface in the presence of a second liquid. It is quantified by the contact angle which represents a drop of liquid deposited on a flat surface: the smaller the angle, the higher the wettability. For example, one can distinguish water-wet reservoirs (with water wetting the grains) and oil-wet reservoirs (oil wetting the grains).

Factors affecting reservoir wettability
- Oil composition
- Rock mineralogy
- Connate water composition and pH
- Reservoir pressure and temperature

Interfacial Tension (IFT) It defines the tension (forces) existing between two immiscible fluids (oil and water).

Oil is left behind a waterflood because it can be:
- Trapped by capillary forces
- Bypassed (because of a bad mobility ratio)

EOR: How to mobilise the oil?
If bypassed: modification of the mobility ratio by increasing the viscosity of water:
- Polymer injection

If trapped by capillary force:
- Increase capillary number (viscous forces/capillary forces(IFT))
- Lower IFT by surfactant injection for instance

Surfactants are compounds that stabilize mixtures of oil and water by reducing the surface tension at the interface between the oil and water molecules. Surfactants are amphiphilic in nature i.e. they contain 2 distinct structural units:
Tail or **hydrophobic group** which has little affinity for water – this group is usually a hydrocarbon (alkyl) chain.

Head or **hydrophilic group** which has strong affinity for water, it can be neutral or charged.

Alkali
Alkaline waterflooding: process where the pH of injection water is increased by addition of alkali (sodium carbonate, sodium silicate, sodium hydroxide, potassium hydroxide). Alkali reacts with acidic compounds of the crude oil leading to lower IFT, emulsification of oil in water and solubilization of rigid interfacial films. Alkali may react with the rock leading to wettability alteration.

In a nutshell:
- **Polymer**
 Increase water viscosity

- **Surfactants**
 Lower IFT
 Change wettability of the rock
 Generate foams or emulsions

- **Alkalis**
 React with crude oil to generate soaps (surfactants)
 Increase pH
 Alter rock wettability
 Alter rock chemistry reducing adsorption of surfactants

EOR: Other processes
- Miscible gas injection
- In-situ combustion
- Steam injection
- Microbial degradation

Final goal: recover as much oil as technically and physically possible. Necessity to have a good understanding of the geology, the reservoir, the fluids…
SNF provides dedicated solutions and engineering services to design, build and operate polymer injection systems.

- Frac trailer
- Polymer injectivity trailer
- Standard PIU 100 and PIUC 100 and PIU 300 MS
- Skid based polymer system
- Emulsion inversion, dilution and injection skid
- Skid based ASP system
- On plot polymer / ASP facilities
- Offshore skids
- Offshore modular construction
- ...

Every system is designed per customer requirements. Standard injection units also exist for fast implementation.

Expertise: Powder Hydration
FLOQUIP PSU™ is a slicing unit that helps decrease the dissolution time of powdered polymer.

- Patented technology from SNF
- Concentration up to 15,000 ppm
- No fish eyes and no need for filtration
- Nitrogen blanketing
- Subsequent equipment reduced by 3x to 4x
FLOQUIP™ PSU – Process Connections

1. Magnetic grid
2. Dosing screw feeder / Gear Motor
3. Flexible connection (weighing)
4. Feeder isolation valve
5. Wetting funnel
6. Cutting head (rotor / stator)
7. Electrical Motor / Pulleys / Belt

FLOQUIP™ PSU – Typical Flowsheet

- Unloading system for big bags
- Powder storage silo
- Mixing unit PSU 100
- Agitated Maturation Tank
- Mother solution booster pump
- High pressure injection pump
- Full E&I Package
- Electrical control Panel & HMI System
- Fire and gas detection system

Main Scope
- Detailed Design
- Procurement & Equipment supply
- FAT of the main equipments
- Skids Construction
- Commissioning, SAT and Start-up
- Vendor Data book
- E&I package (VSD + MCC)
- E&I Cabling
- Skid mounted system

Optional
- Water run test
- Polymer run test
- Training
- Operation & Supervision

PIU 100 Standard Polymer Injection Unit
Projects

Numerous skid-based projects

Offshore projects

Large turn key projects
Turn-key project - Dissolution

PSU 600 - Brazil

PSU 1500 - USA

While SNF makes reasonable efforts to ensure the information is accurate and up-to-date, SNF makes no warranties or representations, express or implied, as to the accuracy, completeness, or any other aspect of the information on this document and assumes no liability in connection with any use of this information. Nothing herein shall be construed as a recommendation or license to use any information found that conflicts with any patent, trademark or copyright of SNF or others, and SNF makes no representations or warranties, express or implied that any use of this information will not infringe any such patent, trademark or copyright.